人工智慧診斷皮膚癌 水準等同醫師

尚未有留言

美國每年約有540萬人確診為皮膚癌,而高致死率的黑色素瘤經常難以辦別;史丹福大學研究團隊,設計一套演算法運用人工智慧進行皮膚癌診斷,準確度等同於皮膚專科醫師,成果已發表於《自然》期刊。

75%皮膚癌患者 死於黑色素瘤

皮膚癌是世界最為常見的癌症之一,其中致死率最高的黑色素瘤(Melanomas),通常以痣或雀斑的形式出現在皮膚上,病灶常常難以區分良性或惡性,雖然僅占皮膚癌案例數中5%,但高達75%皮膚癌患者死於黑色素瘤。

十萬張皮膚病灶影像 檢驗人工智慧診斷能力

史丹福大學研究團隊,收集18個線上專業資料庫與史丹福大學醫學中心資料庫,共12萬7463張訓練與驗證用影像,以及1942張確診良性或惡性皮膚病灶影像,進行 47種皮膚疾病分類的照片訓練GoogleNet Inception V3人工神經網路,運用「卷積神經網路」(convolutional neural networks, CNN)電腦運算功能,檢驗人工智慧區分一般皮膚病灶或皮膚癌病變的能力。

人工智慧診斷準確度 高於皮膚專科醫師

結果顯示,第一次驗證結果,卷積神經網路準確度達72%,而皮膚專科醫師準確度分別為65.56%與66%;第二次驗證結果,卷積神經網路準確度達55.4%,而皮膚專科醫師則為53.5%與55%。最後判斷良性惡性、上皮來源或黑色素細胞來源方面,卷積神經網路的準確度皆高於皮膚專科醫師。

卷積神經網路準確分類 輔助皮膚科醫師診斷

研究者認為,卷積神經網路可以學習不同影像中的內部特性,並將細節準確分類,診斷皮膚病灶的能力與皮膚專科醫師相當;但人工智慧的診斷能力,仍需更進一步的研究釐清臨床上的應用,以及是否會有其他環境因子的影響,未來可望輔助皮膚專科醫師在困難的案例中進行診斷。

本文授權轉載自 健康醫療網

健康醫療網

作者

健康醫療網

健康醫療網是以健康新聞、治療新知為主的全方位健康媒體平台,致力於提供最專業、最即時、最樂活的多元化資訊。「健康部落格」邀請專業人士論述健康資訊,分享更多正確的健康觀念!

Up Next

相關的 文章

發表迴響

你的電子郵件位址並不會被公開。